Proof That \3 Is Irrational

To prove: $\sqrt{3}$ is irrational.

The proof of this result is another example of proof by contradiction.

Proof: Assume that $\sqrt{3}$ is rational and can therefore be written in the form $\frac{a}{b}$, $a, b \in Z$, $b \neq 0$.

Also, assume that the fraction $\frac{a}{b}$ is written in simplest terms, i.e. HCF(a, b) = 1.

$$\sqrt{3} = \frac{a}{b'}$$

 $\Rightarrow 3 = \frac{a^2}{b^2}$ (squaring both sides)
 $\therefore a^2 = 3b^2$ (*)

As b^2 is an integer, a^2 has to be a multiple of 3, which means that 3 divides a^2 .

If 3 divides a², then 3 divides a. (Worked Example 1.3)

 \therefore a = 3k, for some integer k. Substituting 3k for a in (*) gives,

$$(3k)^2 = 3b^2$$
$$9k^2 = 3b^2$$
$$\Rightarrow b^2 = 3k^2$$

As k^2 is an integer, b^2 has to be a multiple of 3, which means that 3 divides b^2 .

Therefore, 3 divides b. If 3 divides a and 3 divides b, then this contradicts the assumption that HCF(a, b) = 1. This completes the proof.

Prove that $\sqrt{2}$ is irrational.

Assume
$$\sqrt{2} = \frac{a}{b}$$
; $a, b \in Z, b \neq 0$

$$\Rightarrow 2 = \frac{a^2}{b^2}$$

$$\Rightarrow a^2 = 2b^2$$

 $\Rightarrow 2|a^2$

$$\Rightarrow a = 2m, m \in Z$$

$$\therefore \frac{a}{b} = \frac{2m}{2n} = \frac{m}{n}$$

$$\therefore \frac{a}{b}$$
 can be simplified to $\frac{m}{n}$

By similar argument, $\frac{m}{n}$ can be simplified ad infinction. This is absurd.

- \therefore initial assumption that $\sqrt{2} = \frac{a}{b}$ is incorrrect.
- $\therefore \sqrt{2}$ is irrational.

$$a^2 = 2b^2$$

$$\Rightarrow (2m)^2 = 2b^2$$

$$\Rightarrow 4m^2 = 2b^2$$

$$\Rightarrow b^2 = 2m^2$$

$$\Rightarrow 2|b^2$$

$$\Rightarrow 2|b$$

$$\Rightarrow b = 2n, n \in \mathbb{Z}$$