Exercise 5.2
Q1 (ii) $\sin 75=\sin (30+45)$

$$
\begin{aligned}
\sin (30+45) & =\sin 30 \cos 45+\cos 30 \sin 45 \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)+(\sqrt{3} / 2)\left(\frac{1}{\sqrt{2}}\right) \\
& =\frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}} \\
& =\frac{1+\sqrt{3}}{2 \sqrt{2}} \quad
\end{aligned}
$$

Q2 (i) $\operatorname{Tan} 15=\operatorname{Tan}(45-30)$

$$
\begin{aligned}
\operatorname{Tan}(45-30)= & \frac{\operatorname{Tan} 45-\operatorname{Tan} 30}{1+\operatorname{Tan} 45 \operatorname{Tan} 30} \\
= & \frac{1-\frac{1}{\sqrt{3}}}{1+(1)(\sqrt{\sqrt{2}})}=\frac{1-\frac{1}{\sqrt{3}}}{1+1 / \sqrt{3}} \quad\binom{\text { mull ear }}{\text { by } \sqrt{3}} \\
= & \frac{\sqrt{3}-1}{\sqrt{3}+1} \\
& \frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} \\
& =\frac{3-2 \sqrt{3}+1}{3-1}=\frac{4-2 \sqrt{3}}{2} \\
& =2-\sqrt{3}
\end{aligned}
$$

Q4 (i) $\sin 45 \cos 15+\cos 45 \sin 15$.

$$
=\sin (45+15)=\sin 60=\sqrt{3} / 2
$$

$=$ (iv)

$$
\begin{aligned}
\frac{\operatorname{Tan} 25+\operatorname{Tan} 20}{1-\operatorname{Tan} 25 \operatorname{Tan} 20} & =\operatorname{Tan}(25+20) \\
& =\operatorname{Tan} 45=1
\end{aligned}
$$

65

$$
\frac{\operatorname{Tan} 2 A+\operatorname{Tan} A}{1-\operatorname{Tan} 2 A \operatorname{Tan} A}=\operatorname{Tan}(2 A+A)=\operatorname{Tan} 3 A
$$

Q6 (i) show

$$
\begin{align*}
\sin (90-A) & =\sin 90 \cos A-\cos 90 \sin A \\
& =(1) \cos A-(0) \sin A \tag{0}\\
& =\cos A
\end{align*}
$$

Q7

$$
\begin{aligned}
& \operatorname{Tan}(A-B)=2 \\
& \frac{\operatorname{Tan} A-\operatorname{Tan} B}{1+\operatorname{Tan} A \operatorname{Tan} B}=2 \\
& \frac{\operatorname{Tan} A-1 / 4}{1+\operatorname{Tan} A\left(\frac{1}{4}\right)}=2 \\
& \operatorname{Tan} A-\frac{1}{4}=2\left(1+\frac{1}{4} \operatorname{Tan} A\right) \\
& \operatorname{Tan} A-\frac{1}{4}=2+\frac{1}{2} \operatorname{Tan} A
\end{aligned}
$$

$$
\operatorname{Tan} B=1 / 4 \quad \text { find } \operatorname{Tan} H
$$

-
- 08
$\operatorname{Tan} B=\frac{1}{3}$ find $(A+B)$

$$
\begin{aligned}
\operatorname{Tan}(A+B) & =\frac{\operatorname{Tan} A+\operatorname{Tan} B}{1-\operatorname{Tan} A \operatorname{Tan} B} \\
\operatorname{Tan}(A+B) & =\frac{\left(\frac{1}{2}\right)+(1 / 3)}{1-(1 / 2)(1 / 3)}=\frac{3+2}{1-1 / 6}=\frac{5 / 6}{5 / 6}=1 \\
\operatorname{Tan}(A+B) & =1 \\
(A+B) & \left.=\operatorname{Tan}^{-1} / 1\right) \\
A+B & =45^{\circ}
\end{aligned}
$$

Qq

$$
\text { Qq } \begin{aligned}
\operatorname{Tan}(A+B) & =1 \quad \operatorname{Tan} A=1 / 3 \quad \text { Ind } \operatorname{Tan} E \\
\frac{\operatorname{Tan} A+\operatorname{Tan} B}{1-\operatorname{Tan} A \operatorname{Tan} B} & =1 \\
\frac{1}{3}+\operatorname{Tan} B & =1\left(1-\frac{1}{3} \operatorname{Tan} B\right) \\
\operatorname{Tan} B+\frac{1}{3} \operatorname{Tan} B & =1-\frac{1}{3} \\
4 / 3 \operatorname{Tan} B & =2 / 3 \\
\operatorname{Tan} B & =2 / 3 \times \frac{3}{4}=1 / 2 \\
\operatorname{Tan} B & =1 / 2
\end{aligned}
$$

- 210

$$
\begin{aligned}
\sin x & =\frac{1}{2} \rightarrow x=\sin _{x=1\left(\frac{1}{2}\right)}^{6} \\
\sin \left(x+\frac{\pi}{4}\right) & =\sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4} \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)+\cos x\left(\frac{1}{\sqrt{2}}\right) \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)+\cos \left(\frac{\pi}{6}\right) \frac{1}{\sqrt{2}} \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)+(\sqrt{3})\left(\frac{1}{\sqrt{2}}\right) \\
& =\frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}}=\frac{1+\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

Q 11

$$
\begin{aligned}
& \operatorname{Tan} 15= \operatorname{Tan}(45-30)=\frac{\tan 45-\operatorname{Tan} 30}{1+\operatorname{Tan} 45 \tan 30} \\
&=\frac{1-\frac{1}{\sqrt{3}}}{1+(1)\left(\frac{1}{\sqrt{3}}\right)}=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}} \quad \text { mult each by } \sqrt{3} \\
&= \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{3-2}{3-1} \\
&=\frac{4-2 \sqrt{3}}{2}=2-\frac{-1}{3} \\
&=\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)^{2}=(2-\sqrt{3})^{2} \\
& \operatorname{Tan}^{2}(15) \\
&= 4-4 \sqrt{3}+3 \\
&= 7-4 \sqrt{3} .
\end{aligned}
$$

- Q12

$$
\begin{aligned}
& 12 \quad \operatorname{Tan}\left(\frac{\pi}{4}+A\right)=\frac{\operatorname{Cos} A+\operatorname{Sin} A}{\operatorname{Cos} A-\operatorname{Sin} A} \\
& \operatorname{Tan}\left(\frac{\pi}{4}+A\right)=\frac{\operatorname{Tan} \frac{\pi}{4}+\operatorname{Tan} A}{1-\operatorname{Tan} \frac{\pi}{4} \operatorname{Tan} A}=\frac{1+\operatorname{Tan} A}{1-(1)(\operatorname{Tan} A)} \\
& =\frac{1+\frac{\sin A}{1-\frac{\sin A}{\operatorname{Cos} A}} \quad \text { mult Each by } \operatorname{Cos} A}{} \quad(\operatorname{Cos} A+\operatorname{Sin} A \\
& \operatorname{Cos} A-\operatorname{Sin} A
\end{aligned} \quad(R+5) \quad l
$$

Q13

$$
\begin{gathered}
\cos (A+B) \cos B+\sin (A+B) \sin B=\cos A \\
(\cos A \cos B-\sin A \sin B) \cos B+(\sin A \cos B+\cos A \sin B) \sin \\
\cos A \cos ^{2} B-\sin A \sin B \cos B+\sin A \cos B \sin B+\cos A \sin ^{2} B \\
\cos A \cos ^{2} B+\cos A \sin ^{2} B \\
\cos A\left(\cos ^{2} B+\sin ^{2} B\right) \\
\cos A(1)=\cos A \quad(R+5)
\end{gathered}
$$

$\operatorname{Tan} A=2 / h \quad \operatorname{Tan} B=3 / h$.

$$
\begin{array}{lc}
= & \operatorname{Tan}(A+B)=\frac{\operatorname{Tan} A+\operatorname{Tan} B}{1-\operatorname{Tan} A \operatorname{Tan} B} \\
= & \operatorname{Tan}(45)=1=\frac{2 / h+3 / h}{1-(2 / h)(/ h)} \\
= & 1=\frac{\frac{5}{h}}{1-6 / h^{2}} \\
= & 1-6 / h^{2}=5 / h \quad\left(x h^{2}\right) \\
= & h^{2}-6=5 h \\
= & h^{2}-5 h-6=0 \\
= & h=6)(h+1)=0 \\
= & h=-1 \\
= & h=6
\end{array}
$$

- Q15

$$
\begin{aligned}
& 15 \\
& \sin A=\sin (A+30) \quad \text { Show } \operatorname{Tan} A=2+\sqrt{3} \\
& \sin (A+30)=\sin A \cos 30+\cos A \sin 30 \quad \operatorname{Tan} A=\frac{\sin A}{\cos A} \cdot \sin A\left(\frac{\sqrt{3}}{2}\right)+\cos A\left(\frac{1}{2}\right) \\
& \sin A-\frac{\sqrt{3}}{2} \sin A=\frac{1}{2} \cos A \quad(\times 2) \\
& 2 \sin A-\sqrt{3} \sin A=\cos A \\
& \sin A(2-\sqrt{3})=\cos A \\
& 2-\sqrt{3}=\frac{\cos A}{\operatorname{Sin} A} \\
& \frac{1}{2-\sqrt{3}}=\frac{\sin A}{\cos A} \\
& \frac{1}{2-\sqrt{3}}=\operatorname{Tan} A \\
& \frac{1}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}=\frac{2+\sqrt{3}}{4-3}=2+\sqrt{3} \\
& \operatorname{Tan} A=2+\sqrt{3}
\end{aligned}
$$

Q

$$
\begin{aligned}
& \operatorname{Cos} A=\frac{5^{-2}+6^{2}-4^{2}}{2(5)(6)}=3 / 4 \\
& \cos C=\frac{5^{-2}+4^{2}-6^{2}}{2(5)(4)}=\frac{1}{8}
\end{aligned}
$$

Snow $\cos A+\cos C=7 / 8$

$$
\begin{equation*}
3 / 4+1 / 8=\frac{6+1}{8}=7 / 8 \tag{QED.}
\end{equation*}
$$

$$
\text { sha } \begin{aligned}
\operatorname{Cos}(A+C) & =-9 / 16 \\
\cos (A+C) & =\cos A \cos C-\sin A \sin B .
\end{aligned}
$$

Require: $\sin A$ and $\sin C$.

$$
\cos A=3 / 4
$$

$$
\begin{gathered}
4^{2}=3^{2}+x^{2} \\
\sqrt{7}=x .
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \sin A=\sqrt{7} / 4 \\
& \cos C=1 / 8
\end{aligned}
$$

$$
8^{2}=1^{2}+x^{2}
$$

$$
\sqrt{63}=x
$$

$$
\begin{aligned}
\Rightarrow & \sin C=\sqrt{63} \\
\operatorname{Cos}(A+C) & =\left(\frac{3}{4}\right)\left(\frac{1}{8}\right)-\left(\frac{\sqrt{7}}{4}\right)\left(\frac{\sqrt{63}}{8}\right) \\
& =\frac{3}{32}-\frac{21}{32}=-\frac{18}{32}=\frac{-9}{16} \quad \text { OED. }
\end{aligned}
$$

$=-Q 17$

$=\quad \operatorname{Tan}(\theta+45)=\frac{\operatorname{Tan} \theta+\operatorname{Tan} 45}{1-\operatorname{Tan} \theta \operatorname{Tan} 45}$
$=\quad \frac{6}{h}=\frac{\frac{1}{h}+1}{1-\left(\frac{1}{h}\right)(1)}$
$\Rightarrow \quad \frac{6}{h}=\frac{\frac{1}{h}+1}{1-1 / h} \quad$ (mult each by h)
$\frac{6 h}{h^{2}}=\frac{1+h}{h-1}$
$G h(h-1)=h^{2}(1+h)$
$6 h^{2}-6 h=h^{2}+h^{3} \quad(-h)$
$6 h-6=h+h^{2}$

$$
\begin{aligned}
& 0=h^{2}-5 h+6 \\
& 0=(h-2)(h-3)
\end{aligned}
$$

$h=2 \mathrm{~m} \quad h=3 \mathrm{~m}$.

