Solutions to ex 5.3 - Text and Tests 4 Trigonometry 2
$=\frac{E x 5 \cdot 3}{\frac{Q 1}{Q}} \quad \sin A=3 / 5$

$$
\begin{aligned}
& \Rightarrow x=4 \\
& \Rightarrow \cos A=\frac{4}{5}
\end{aligned}
$$

(i)

$$
\begin{aligned}
\sin 2 A & =2 \sin A \cos A \\
& =2(3 / 5)(4 / 5)=\frac{24}{25} \quad \operatorname{Tan} A=3 / 4
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =\left(\frac{4}{5}\right)^{2}-(3 / 5)^{2}=\frac{16}{25}-\frac{9}{25}=7 / 25
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\operatorname{Tan} 2 A & =\frac{2 \operatorname{Tan} A}{1-\operatorname{Tan}^{2} A} \\
& =\frac{2(3 / 4)}{1-(3 / 4)^{2}}=\frac{6 / 4}{1-9 / 16}=\frac{6 / 4}{7 / 6} \\
& =\frac{6}{4} \times \frac{16}{7}=\frac{24}{7}
\end{aligned}
$$

QR

$$
\operatorname{Tan} A=1 / 2
$$

(i) $\operatorname{Tan} 2 A=\frac{2 \operatorname{Tan} A}{1-\operatorname{Tan}^{2} A}=\frac{2\left(\frac{1}{2}\right)}{1-(1 / 2)^{2}}=\frac{1}{1-1 / 4}=\frac{1}{3 / 4}=\frac{4}{3}$
(ii)

$$
\begin{aligned}
\operatorname{Sin} 2 A & =2 \sin A \cos A \\
& =2(1 / 5)(2 / \sqrt{3})=\frac{4}{5}
\end{aligned}
$$

\checkmark Qu

$$
\begin{aligned}
& x^{2}=(2 \sqrt{2})^{2}+(1)^{2} \\
& x^{2}=8+1=9 \\
& x=3
\end{aligned}
$$

$$
\cos A=2 \sqrt{2} / 3
$$

$$
\sin A=1 / 3
$$

$$
\operatorname{Tan} A=1 / 2 \cdot \overline{2}
$$

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =(2 \sqrt{2} / 3)^{2}-\left(\frac{1}{3}\right)^{2} \\
& =8 / 9-\frac{1}{9}=17 / 9
\end{aligned}
$$

QU.
or

$$
\begin{aligned}
& \cos 2 A=3 / 8 \quad \text { find } \sin A=\cos A \text {. } \\
& \cos 2 A=1-2 \sin ^{2} A \text {. } \\
& 3 / 8=1-2 \sin ^{2} A \\
& 2 \sin ^{2} A=5 / 8 \\
& \sin ^{2} A=5 / 16 \\
& \sin A=\frac{\sqrt{5} / 16}{\sqrt{5}}=\frac{\sqrt{5}}{4} \\
& \sqrt{5} \int_{x}^{4} \\
& 4^{2}=\sqrt{5}^{2}+x^{2} \\
& 16-5=x^{2} \\
& \sqrt{11}=x \\
& \Rightarrow \cos A=\frac{\sqrt{11}}{4} \\
& \cos 2 A=2 \cos ^{2} A-1 \\
& 3 / 8=2 \cos ^{2} A-1 \\
& \cos A=\sqrt{\frac{11}{16}}=\frac{\sqrt{\pi}}{4} \\
& \frac{11}{8}=2 \cos ^{2} A \\
& \frac{11}{16}=\operatorname{Cos}^{2} A
\end{aligned}
$$

$\begin{aligned} & \Rightarrow \quad 105 \quad \sin 2 A=2 \sin A \cos A \\ & \Rightarrow \quad(i) \\ & \Rightarrow A \sin 15 \cos 15=\sin 2 A \\ & \Rightarrow \Rightarrow \sin B 0^{\circ}=\frac{1}{2}\end{aligned}$

$$
2 \sin 15
$$

$$
\cos 15=\sin 2 A
$$

$$
\Rightarrow A=30^{\circ}
$$

$$
\Rightarrow \sin B O=\frac{1}{2}
$$

$$
/ f
$$

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& \cos ^{2} 2 \frac{1}{2}-\sin ^{2} 22 \frac{1}{2} \\
& =\cos 45 \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

(ii)

CO

$$
\begin{aligned}
\frac{2 \operatorname{Tan} 22 \frac{1}{2}}{1-\operatorname{Tan}^{2} 22 \frac{1}{2}} & =2 \operatorname{Tan} A \\
\Rightarrow & A=25 \\
& \operatorname{Tan} 45=1 .
\end{aligned}
$$

Q7 Prove

$$
\begin{aligned}
& \cos 3 A=4 \cos ^{3} A-3 \cos A \\
& \begin{aligned}
\cos 3 A & =\cos (2 A+A) \\
\cos (2 A+A) & =(\cos 2 A \cos A-\sin 2 A \sin A \\
& =\left(2 \cos ^{2} A-1\right) \cos A-(2 \sin A \cos A) \sin A \\
& =2 \cos ^{3} A-\cos A-2\left(\sin ^{2} A \cos A\right. \\
& =2 \cos ^{3} A-\cos A-2\left(1-\cos ^{2} A\right) \cos A \\
& =2 \cos ^{3} A-\cos A-2\left(\cos A-\cos ^{3} A\right) \\
& =3 \cos ^{3} A-\cos A-2 \cos A+\cos ^{3} A
\end{aligned}
\end{aligned}
$$

3 DO8 Prove

$$
\text { (i) } \begin{aligned}
(\sin A & +\cos A)^{2}=1+\sin 2 A \\
\sin ^{2} A & +2 \sin A \cos A+\cos ^{2} A \\
1 & +\sin 2 A \quad Q E D .
\end{aligned}
$$

3
3 (ii) $\frac{\cos 2 A}{\cos A+\sin A}=\cos A-\sin A$
\exists
$5>\frac{\cos ^{2} A-\sin ^{2} A}{\cos A+\sin A}$

$$
\frac{(\cos A+\sin A(\cos A-\sin A)}{\cos A+\sin A}=\cos A-\sin A
$$

COD.

Qq

$$
\begin{gathered}
\text { Show } 1-(\cos x-\sin x)^{2}=\sin 2 x \\
1-\left[\cos ^{2} A-2 \cos x \sin x+\sin ^{2} x\right] \\
1-\cos ^{2} A+2 \cos x \sin x-\operatorname{Sin}^{2} x \\
1-\cos ^{2} A-\sin ^{2} A+2 \cos x \sin x \\
1-\left(\cos ^{2} A+\sin ^{2} A\right)+2 \cos x \sin x \\
1-1+2 \cos x \sin x \\
1=\sin 2 x
\end{gathered}
$$

COED.

Q10 $\operatorname{Tan} A=\frac{1}{2}$

$$
\begin{aligned}
& x^{2}=1^{2}+2^{2} \\
& x=\sqrt{5}
\end{aligned}
$$

Find $\operatorname{Tan} 2 A$

$$
\begin{aligned}
\operatorname{Tan} 2 A & =\frac{2 \operatorname{Tan} A}{1-\operatorname{Tan}^{2} A} \\
& =\frac{2\left(\frac{1}{2}\right)}{1-(1 / 2)^{2}}=\frac{1}{1-\frac{1}{4}}=\frac{1}{3 / 4}=\frac{4}{3}
\end{aligned}
$$

Q11 $\quad \cos A=3 / 5$

(i)

$$
\begin{aligned}
\sin 2 A & =2 \sin A \cos A \\
& =2(4 / 5)(3 / 5) \\
& =\frac{24}{25}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =(3 / 5)^{2}-(4 / 5)^{2} \\
& =9 / 25-\frac{16}{25}=\frac{-7}{25}
\end{aligned}
$$

Q12 Prove $\frac{1-\cos 2 A}{\operatorname{Sin} 2 A}=\operatorname{Tan} A$

Q13 Show $\frac{2 \operatorname{Tan} A}{1+\operatorname{Tan}^{2} A}=\sin 2 A$

$\frac{2\left(\frac{\sin A}{\cos A}\right)}{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}$
E

$$
\begin{array}{lc}
\mathbf{m} & \frac{2 \frac{\sin A}{\cos A}}{\cos A} \\
=\mathbf{z} & 2 \frac{\sin A}{\cos A} \times \frac{\cos A}{1} \\
= & =2 \sin A
\end{array}
$$

Q14 $\tan 2 \theta=\frac{4}{3}$

$$
\begin{aligned}
& \frac{2 \operatorname{Tan} A}{1-\operatorname{Tan}^{2} A}=\frac{4}{3} \\
& 6 \operatorname{Tan} A=4\left(1-\operatorname{Tan}^{2} A\right) \\
& 6 \operatorname{Tan} A=4-4 \operatorname{Tan}^{2} A \\
& 4 \operatorname{Tan}^{2} A+6 \operatorname{Tan} A-4=0 \\
& 2 \operatorname{Tan}^{2} A+3 \operatorname{Tan} A-2=0 \\
& (2 \operatorname{Tan} A-1)(\operatorname{Tan} A+2)=0 \\
& 2 \operatorname{Tan} A-1=0 \quad \operatorname{Tan} A+2=0 \\
& 2 \operatorname{Tan} A=1 \quad \operatorname{Tan} A=-2 .
\end{aligned}
$$

Q15
(i)

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b} \\
& \frac{\sin 2 B}{5}=\frac{\sin B}{3} \\
& \sin 2 \beta=\frac{5 \sin \beta}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \operatorname{Tas} \\
& \tan \beta=\frac{\sqrt{4} / 6}{56} \\
& 1 \quad \frac{\sqrt{11}}{6} \times \frac{6}{5} \\
& \tan \beta=\frac{\sqrt{11}}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{Q 16}{12} \tan A=\frac{4}{3} \quad \operatorname{Tan}(A+B)=-1
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tan}(A+B)=\frac{\operatorname{Tan} A-\operatorname{Tan} B}{1+\operatorname{Tan} A \operatorname{Tan} B} \\
& =-1=\frac{4 / 3-\operatorname{Tan} B}{1+\frac{4}{3} \operatorname{Tan} B} \\
& -1-\frac{4}{3} \operatorname{Tan} B=\frac{4}{3}-\operatorname{Tan} B \\
& +\operatorname{Tan} \beta-\frac{4}{3} \operatorname{Tan} \beta=+\frac{4}{3} \neq 1 \\
& -\frac{1}{3} \operatorname{Tan} B=+7 / 3 \\
& \operatorname{Tan} \beta=+7 / 3 \times-3 / 1 \\
& \operatorname{Tan} \beta=-7
\end{aligned}
$$

!

$$
\text { (ii) } \begin{aligned}
\operatorname{Sin} 2 \beta & =\frac{2 \operatorname{Tan} \beta}{1+\operatorname{Tan}^{2} \beta} \\
& =\frac{2(7)}{1+(7)^{2}}=\frac{14}{58}=\frac{7}{25}
\end{aligned}
$$

Q17
(i)

$$
\begin{aligned}
& \quad \frac{\sin 2 A}{1+\cos 2 A}=\operatorname{Tan} A \\
& \frac{\sin ^{2} A+\cos ^{2} A+\cos ^{2}-\sin ^{2} A}{2 \sin A \cos A} \\
& \frac{2 \cos ^{2} A}{\cos ^{2} A} \\
& \\
& \frac{\sin A}{\cos A}=\operatorname{Tan} A \quad[R H 5]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \operatorname{Tan} 22 \frac{1}{2}=\sqrt{2}-1 \\
& \operatorname{Tan} 22 \frac{1}{2}=\frac{\operatorname{Sin} 2\left(22 \frac{1}{2}\right)}{1+\operatorname{Cos} 2\left(22 \frac{1}{2}\right)}=\frac{\operatorname{Sin} 45}{1+\operatorname{Cos} 45} \\
& \left.=\frac{\frac{1}{\sqrt{2}}}{1+\sqrt[1]{\sqrt{2}}}=6 \sqrt{2}\right) \\
& \frac{1}{\sqrt{2}+1} \times \frac{1-\sqrt{2}}{1-\sqrt{2}}=\frac{1-\sqrt{2}}{\sqrt{2}-2}+1-\sqrt{2} \\
& =\frac{1-\sqrt{2}}{-1}=\sqrt{2}-1
\end{aligned}
$$

Q18

$$
\begin{aligned}
& \cos 2 A=1-2 \sin ^{2} A \\
& \operatorname{Cos} 2 A=2 \cos ^{2} A-1
\end{aligned}
$$

(i)

$$
\begin{aligned}
\cos 4 A & =\cos (2 A+2 A) \\
& =1-2 \sin ^{2} 2 A
\end{aligned}
$$

(ii) $\quad \operatorname{Cos} 4 A=2 \operatorname{Cos}^{2} 2 A-1$

Show $\frac{1-\operatorname{Cos} 4 A}{1+\operatorname{Cos} 4 A}=\operatorname{Tan}^{2} 2 A$

$$
\begin{aligned}
& \frac{1-\left(i-2 \sin ^{2} 2 A\right)}{1+2 \cos ^{2} 2 A-1}=\frac{-2 \sin ^{2} 2 A}{2 \cos ^{2} 2 A} \\
& =\frac{\sin ^{2} 2 A}{\cos ^{2} 2 A}=\tan ^{2} 2 A
\end{aligned}
$$

Q19

(i)

Cosine Rule:

$$
\begin{aligned}
&(10)^{2}=(21)^{2}+(17)^{2}-2(21)(17) \cos A \\
& 100=441+284-7 / 4 \cos A \\
& 100=730-714 \cos A \\
& 100-730=-7 / 4 \cos A \\
& \pm 630=714 \cos A \\
& \frac{630}{714}=\cos A \\
& \frac{15}{17}=\cos A
\end{aligned}
$$

(ii) $\operatorname{Tan} \frac{A}{2}$

$$
\begin{aligned}
& \operatorname{Tan} A=\frac{2 \operatorname{Tan} \frac{A}{2}}{1-\operatorname{Tan}^{2} \frac{A}{2}} \\
& \frac{8}{15}=\frac{2 \operatorname{Tan} \frac{A}{2}}{1-\operatorname{Tan}^{2} \frac{A}{2}} \\
& 8-8 \operatorname{Tan}^{2} \frac{A}{2}=30 \operatorname{Tan} A / 2 \\
& 8 \operatorname{Tan}^{2} A / 2+30 \operatorname{Tan} A / 2-8=0 \\
& 4 \operatorname{Tan}^{2} A / 2+15 \operatorname{Tan} A / 2-4=0 \\
& \left(4 \operatorname{Tan} \frac{A}{2}-1 \times\left(\operatorname{Tan} \frac{1}{2}+4\right)=0\right. \\
& \text { Ans: } \operatorname{Tan} \frac{A}{2}=+\frac{1}{4} \text { or } \operatorname{Tan} \frac{A}{2}=-4+
\end{aligned}
$$

Q20
(i) $\quad(S R)=h \operatorname{Tan}(45-B)$

$$
\begin{aligned}
& \operatorname{Tan}(45-\beta)=\frac{|15 R|}{h} \\
& h \operatorname{Tan}(45-\beta)=|5 R| \quad \text { CED. }
\end{aligned}
$$

(ii) $\quad(Q S)=2 h \operatorname{Tan} 2 \beta$.

$$
\begin{aligned}
& \operatorname{Tan}(45+\beta)=\frac{y}{h} \\
& h \operatorname{Tan}(45+\beta)=y
\end{aligned}
$$

$$
\begin{aligned}
& =h[\tan 45+\beta-\operatorname{Tan} 45-\beta] \\
& =h\left[\frac{\tan 45+\operatorname{Tan} \beta}{1-\operatorname{Tan} 45 \operatorname{Tan} \beta}-\frac{\operatorname{Tan} 45-\operatorname{Tan} \beta}{1+\operatorname{Tan} 45 \operatorname{Tan} \beta}\right] \\
& =h\left[\frac{1+\tan \beta}{1-\tan \beta}-\frac{1-\tan \beta}{1+\tan \beta}\right] \\
& =h\left[\frac{(1+\operatorname{Tan} \beta)^{2}-(1-\operatorname{Tan} \beta)^{2}}{(1-\operatorname{Tan} \beta)(1+\operatorname{Tan} \beta)}\right] \\
& =h\left[\frac{1 f\left(2 \operatorname{Tan} \beta+\tan ^{2} \beta-1+2 \operatorname{Tan} \beta\right)-\tan ^{2} \beta}{1+\operatorname{Tan}^{2} \beta}\right] \\
& =h\left[\frac{\angle \tan \beta}{1-\tan ^{2} \beta}\right]=2 h\left(\frac{\tan \beta}{1-\tan ^{2} \beta}\right] \\
& =2 h \operatorname{Tan} 2 \beta
\end{aligned}
$$

QED

